We construct a minimal four-band model for the two-dimensional (2D)topological insulators and quantum anomalous Hall insulators based on the$p_x$- and $p_y$-orbital bands in the honeycomb lattice. The multiorbitalstructure allows the atomic spin-orbit coupling which lifts the degeneracybetween two sets of on-site Kramers doublets $j_z=\pm\frac{3}{2}$ and$j_z=\pm\frac{1}{2}$. Because of the orbital angular momentum structure ofBloch-wave states at $\Gamma$ and $K(K^\prime)$ points, topological gaps areequal to the atomic spin-orbit coupling strengths, which are much larger thanthose based on the mechanism of the $s$-$p$ band inversion. In the weak andintermediate regime of spin-orbit coupling strength, topological gaps are theglobal gap. The energy spectra and eigen wave functions are solved analyticallybased on Clifford algebra. The competition among spin-orbit coupling $\lambda$,sublattice asymmetry $m$ and the N\'eel exchange field $n$ results in bandcrossings at $\Gamma$ and $K (K^\prime)$ points, which leads to varioustopological band structure transitions. The quantum anomalous Hall state isreached under the condition that three gap parameters $\lambda$, $m$, and $n$satisfy the triangle inequality. Flat bands also naturally arise which allow alocal construction of eigenstates. The above mechanism is related to severalclasses of solid state semiconducting materials.
展开▼
机译:我们基于蜂窝晶格中的$ p_x $-和$ p_y $-轨道带构建了二维(2D)拓扑绝缘子和量子异常霍尔绝缘子的最小四频带模型。多轨道结构允许原子自旋轨道耦合,从而提升两组现场Kramers双重结构$ j_z = \ pm \ frac {3} {2} $和$ j_z = \ pm \ frac {1} {2} $之间的简并性。由于在$ \ Gamma $和$ K(K ^ \ prime)$点处的Bloch波状态的轨道角动量结构,拓扑间隙等于原子自旋轨道耦合强度,其远大于基于原子机理的自旋轨道耦合强度。 $ s $-$ p $波段反转。在自旋轨道耦合强度的弱中级状态下,拓扑间隙是全局间隙。基于Clifford代数解析求解能谱和本征波函数。自旋轨道耦合$ \ lambda $,亚晶格不对称$ m $和N \'elel交换场$ n $之间的竞争导致跨越$ \ Gamma $和$ K(K ^ \ prime)$点,这导致到各种拓扑带结构的转变。在三个间隙参数$ \ lambda $,$ m $和$ n $满足三角形不等式的条件下,达到了量子异常霍尔状态。自然也会产生平坦的带,这允许局部构造本征态。以上机理与固态半导体材料的几类有关。
展开▼